

Name:		Teacher: Mrs Da Cruz
Marks:	20	
Time Allowed:	20 minutes	

Instructions: You **ARE NOT** permitted any notes or calculator. Show your working where appropriate remembering you must show working for questions worth more than 2 marks.

Express $z = -1 - \sqrt{3}i$ in polar form.

Question 2

[1, 4 = 5 marks]

Consider $f(z) = 2z^3 - 5z^2 + 22z - 10$, $z \in \mathbb{C}$.

a) Show that f(0.5) = 0.

b) Find all values, real and complex, for which f(z) = 0.

A quadratic equation with real coefficients has one of its roots as z = 7 - 2i. Find the equation.

Question 4

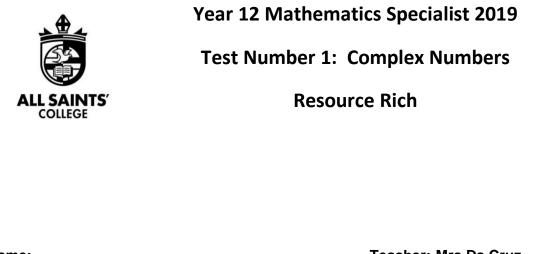
[3 marks]

If $z = \frac{1}{2-3i}$ then express *z* in cartesian form. Hence find *z*. \overline{z}

Using de Moivre's Theorem, find the exact value of $(1 + i)^5 - (1 - i)^5$

Question 6

[2 marks]


Complete this proof that de Moivre's Theorem hold for n = -1. Ensure you provide your reasons when you use various rules (or show use of them).

RTP: $(cis \theta)^{-1} = cis (-\theta)$

Proof: LHS = $(cis \theta)^{-1}$

$$=\frac{1}{\cos\theta+i\sin\theta}$$

$$=$$
 cis $(-\theta) =$ RHS

 Name:

 Teacher: Mrs Da Cruz

 Marks:
 25

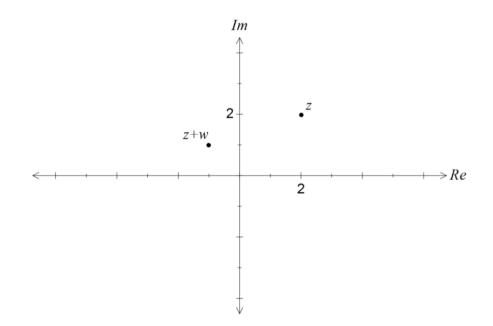
 Time Allowed:
 25 minutes

Instructions: You are permitted 1 A4 page of notes and calculators. Show your working where appropriate remembering you must show working for questions worth more than 2 marks.

[1, 1, 2, 2 = 6 marks]

Let two complex numbers be $z = a(\cos \theta + i \sin \theta)$ and $w = b(\cos \phi + i \sin \phi)$. Determine the following in terms of a, b, ϕ and θ .

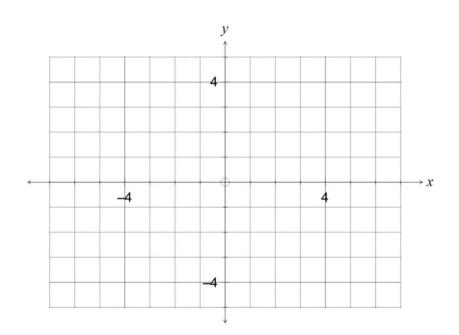
a) $Arg(\sqrt{w})$.


b) $\frac{|w|}{|z^2|}$.

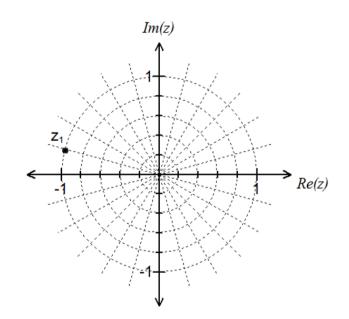
c)
$$Arg\left(\frac{zw}{i}\right)$$
.

d) $|z^{-1}w^2|$.

The complex numbers z and z + w are shown on the Argand diagram below. On the same diagram plot and label the location of the following.


- a) $i^2 z$.
- b) *w*.
- c) $z^2 + wz$.

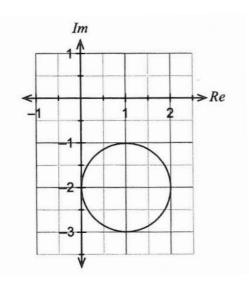
Question 9


[4 marks]

Sketch the region |z| = 2|z - 3| in the complex plane.

Solve the equation $z^4 = 2 + 2\sqrt{3}i$, expressing all solutions in polar form.

One solution to the equation $z^6 = a + bi$, where *a* and *b* are real constants, is shown on the diagram below.



(i)	Plot all other solutions to the equation on the diagram.	(2 marks)

(ii) Determine the values of *a* and *b*. (2 marks)

[3 marks]

A sketch of the locus of a complex number *z* is shown below. Determine the maximum value for arg (*z*) correct to 0.01, where $0 \le \arg(z) < 2\pi$.

